3.2.7 \(\int \frac {1}{x (a+b x+c x^2)^{3/2} (d-f x^2)} \, dx\) [107]

Optimal. Leaf size=394 \[ \frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {2 f \left (a \left (2 c^2 d-b^2 f+2 a c f\right )+b c (c d-a f) x\right )}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{a^{3/2} d}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2}} \]

[Out]

-arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^(3/2)/d-1/2*f^(3/2)*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x
*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))/d/(c*d+a*f-b*d^(1/2)*f^(1/2))
^(3/2)+1/2*f^(3/2)*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+
b*d^(1/2)*f^(1/2))^(1/2))/d/(c*d+a*f+b*d^(1/2)*f^(1/2))^(3/2)+2*(b*c*x-2*a*c+b^2)/a/(-4*a*c+b^2)/d/(c*x^2+b*x+
a)^(1/2)-2*f*(a*(2*a*c*f-b^2*f+2*c^2*d)+b*c*(-a*f+c*d)*x)/(-4*a*c+b^2)/d/(b^2*d*f-(a*f+c*d)^2)/(c*x^2+b*x+a)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.72, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 7, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6857, 754, 12, 738, 212, 1032, 1047} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{a^{3/2} d}-\frac {2 f \left (a \left (2 a c f+b^2 (-f)+2 c^2 d\right )+b c x (c d-a f)\right )}{d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (b^2 d f-(a f+c d)^2\right )}+\frac {2 \left (-2 a c+b^2+b c x\right )}{a d \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2}}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d \left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^{3/2}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d \left (a f+b \sqrt {d} \sqrt {f}+c d\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x + c*x^2)^(3/2)*(d - f*x^2)),x]

[Out]

(2*(b^2 - 2*a*c + b*c*x))/(a*(b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (2*f*(a*(2*c^2*d - b^2*f + 2*a*c*f) + b*
c*(c*d - a*f)*x))/((b^2 - 4*a*c)*d*(b^2*d*f - (c*d + a*f)^2)*Sqrt[a + b*x + c*x^2]) - ArcTanh[(2*a + b*x)/(2*S
qrt[a]*Sqrt[a + b*x + c*x^2])]/(a^(3/2)*d) - (f^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt
[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d*(c*d - b*Sqrt[d]*Sqrt[f] + a*f)^(
3/2)) + (f^(3/2)*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[
f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d*(c*d + b*Sqrt[d]*Sqrt[f] + a*f)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 754

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
 a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 1032

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)))*((g*c)*((-b
)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*(2*a*f)) + c*(g*(2*c^2*d + b^2*f - c*(2*a*f)) - h*(b*c*d + a
*b*f))*x), x] + Dist[1/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + f
*x^2)^q*Simp[(b*h - 2*g*c)*((c*d - a*f)^2 - (b*d)*((-b)*f))*(p + 1) + (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c*
(c*d - a*f)))*(a*f*(p + 1) - c*d*(p + 2)) - (2*f*((g*c)*((-b)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*
(2*a*f)))*(p + q + 2) - (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(b*f*(p + 1)))*x - c*f*(b^2*(g*f
) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}
, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[b^2*d*f + (c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1
])

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \left (a+b x+c x^2\right )^{3/2} \left (d-f x^2\right )} \, dx &=\int \left (\frac {1}{d x \left (a+b x+c x^2\right )^{3/2}}-\frac {f x}{d \left (a+b x+c x^2\right )^{3/2} \left (-d+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x \left (a+b x+c x^2\right )^{3/2}} \, dx}{d}-\frac {f \int \frac {x}{\left (a+b x+c x^2\right )^{3/2} \left (-d+f x^2\right )} \, dx}{d}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {2 f \left (a \left (2 c^2 d-b^2 f+2 a c f\right )+b c (c d-a f) x\right )}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int \frac {-\frac {b^2}{2}+2 a c}{x \sqrt {a+b x+c x^2}} \, dx}{a \left (b^2-4 a c\right ) d}-\frac {(2 f) \int \frac {\frac {1}{2} b \left (b^2-4 a c\right ) d f-\frac {1}{2} \left (b^2-4 a c\right ) f (c d+a f) x}{\sqrt {a+b x+c x^2} \left (-d+f x^2\right )} \, dx}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {2 f \left (a \left (2 c^2 d-b^2 f+2 a c f\right )+b c (c d-a f) x\right )}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}+\frac {\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{a d}-\frac {f^2 \int \frac {1}{\left (\sqrt {d} \sqrt {f}+f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d \left (c d-b \sqrt {d} \sqrt {f}+a f\right )}-\frac {f^2 \int \frac {1}{\left (-\sqrt {d} \sqrt {f}+f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d \left (c d+b \sqrt {d} \sqrt {f}+a f\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {2 f \left (a \left (2 c^2 d-b^2 f+2 a c f\right )+b c (c d-a f) x\right )}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}-\frac {2 \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{a d}+\frac {f^2 \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}+2 a f-\left (2 c \sqrt {d} \sqrt {f}-b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d \left (c d-b \sqrt {d} \sqrt {f}+a f\right )}+\frac {f^2 \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}+2 a f-\left (-2 c \sqrt {d} \sqrt {f}-b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d \left (c d+b \sqrt {d} \sqrt {f}+a f\right )}\\ &=\frac {2 \left (b^2-2 a c+b c x\right )}{a \left (b^2-4 a c\right ) d \sqrt {a+b x+c x^2}}-\frac {2 f \left (a \left (2 c^2 d-b^2 f+2 a c f\right )+b c (c d-a f) x\right )}{\left (b^2-4 a c\right ) d \left (b^2 d f-(c d+a f)^2\right ) \sqrt {a+b x+c x^2}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{a^{3/2} d}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d \left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 1.34, size = 486, normalized size = 1.23 \begin {gather*} \frac {2 \left (b^4 f+2 a c^2 (c d+a f)-b^2 c (c d+4 a f)+b^3 c f x-b c^2 (c d+3 a f) x\right )}{a \left (-b^2+4 a c\right ) \left (c^2 d^2+2 a c d f+f \left (-b^2 d+a^2 f\right )\right ) \sqrt {a+x (b+c x)}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c} x-\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {f^2 \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b^2 d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+a c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+a^2 f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 b \sqrt {c} d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-a f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{2 c^2 d^3-2 b^2 d^2 f+4 a c d^2 f+2 a^2 d f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x + c*x^2)^(3/2)*(d - f*x^2)),x]

[Out]

(2*(b^4*f + 2*a*c^2*(c*d + a*f) - b^2*c*(c*d + 4*a*f) + b^3*c*f*x - b*c^2*(c*d + 3*a*f)*x))/(a*(-b^2 + 4*a*c)*
(c^2*d^2 + 2*a*c*d*f + f*(-(b^2*d) + a^2*f))*Sqrt[a + x*(b + c*x)]) + (2*ArcTanh[(Sqrt[c]*x - Sqrt[a + x*(b +
c*x)])/Sqrt[a]])/(a^(3/2)*d) + (f^2*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^
4 & , (b^2*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + a*c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] -
 #1] + a^2*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*b*Sqrt[c]*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x +
c*x^2] - #1]*#1 - c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 - a*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*
x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ])/(2*c^2*d^3 - 2*b^2*d^2*f + 4*a*c*d^2*f
+ 2*a^2*d*f^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(989\) vs. \(2(326)=652\).
time = 0.12, size = 990, normalized size = 2.51

method result size
default \(-\frac {\frac {f}{\left (-b \sqrt {d f}+f a +c d \right ) \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (2 c \left (x +\frac {\sqrt {d f}}{f}\right )+\frac {-2 c \sqrt {d f}+b f}{f}\right )}{\left (-b \sqrt {d f}+f a +c d \right ) \left (\frac {4 c \left (-b \sqrt {d f}+f a +c d \right )}{f}-\frac {\left (-2 c \sqrt {d f}+b f \right )^{2}}{f^{2}}\right ) \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {f \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{\left (-b \sqrt {d f}+f a +c d \right ) \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}}{2 d}+\frac {\frac {1}{a \sqrt {c \,x^{2}+b x +a}}-\frac {b \left (2 c x +b \right )}{a \left (4 a c -b^{2}\right ) \sqrt {c \,x^{2}+b x +a}}-\frac {\ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{a^{\frac {3}{2}}}}{d}-\frac {\frac {f}{\left (b \sqrt {d f}+f a +c d \right ) \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (2 c \sqrt {d f}+b f \right ) \left (2 c \left (x -\frac {\sqrt {d f}}{f}\right )+\frac {2 c \sqrt {d f}+b f}{f}\right )}{\left (b \sqrt {d f}+f a +c d \right ) \left (\frac {4 c \left (b \sqrt {d f}+f a +c d \right )}{f}-\frac {\left (2 c \sqrt {d f}+b f \right )^{2}}{f^{2}}\right ) \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}-\frac {f \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{\left (b \sqrt {d f}+f a +c d \right ) \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}}{2 d}\) \(990\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(f/(-b*(d*f)^(1/2)+f*a+c*d)/((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b
*(d*f)^(1/2)+f*a+c*d))^(1/2)-(-2*c*(d*f)^(1/2)+b*f)/(-b*(d*f)^(1/2)+f*a+c*d)*(2*c*(x+(d*f)^(1/2)/f)+1/f*(-2*c*
(d*f)^(1/2)+b*f))/(4*c/f*(-b*(d*f)^(1/2)+f*a+c*d)-1/f^2*(-2*c*(d*f)^(1/2)+b*f)^2)/((x+(d*f)^(1/2)/f)^2*c+1/f*(
-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)-f/(-b*(d*f)^(1/2)+f*a+c*d)/(1/f*(-
b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*
(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(
-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f)))+1/d*(1/a/(c*x^2+b*x+a)^(1/2)-b/a*(2*c*x+b)/(4*a*c-b^2)/(c*
x^2+b*x+a)^(1/2)-1/a^(3/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x))-1/2/d*(1/(b*(d*f)^(1/2)+f*a+c*d)*f/(
(x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)-(2*c*(d*f)^(1
/2)+b*f)/(b*(d*f)^(1/2)+f*a+c*d)*(2*c*(x-(d*f)^(1/2)/f)+(2*c*(d*f)^(1/2)+b*f)/f)/(4*c*(b*(d*f)^(1/2)+f*a+c*d)/
f-(2*c*(d*f)^(1/2)+b*f)^2/f^2)/((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)
+f*a+c*d)/f)^(1/2)-1/(b*(d*f)^(1/2)+f*a+c*d)*f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)
/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(
d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

-integrate(1/((c*x^2 + b*x + a)^(3/2)*(f*x^2 - d)*x), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{- a d x \sqrt {a + b x + c x^{2}} + a f x^{3} \sqrt {a + b x + c x^{2}} - b d x^{2} \sqrt {a + b x + c x^{2}} + b f x^{4} \sqrt {a + b x + c x^{2}} - c d x^{3} \sqrt {a + b x + c x^{2}} + c f x^{5} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**2+b*x+a)**(3/2)/(-f*x**2+d),x)

[Out]

-Integral(1/(-a*d*x*sqrt(a + b*x + c*x**2) + a*f*x**3*sqrt(a + b*x + c*x**2) - b*d*x**2*sqrt(a + b*x + c*x**2)
 + b*f*x**4*sqrt(a + b*x + c*x**2) - c*d*x**3*sqrt(a + b*x + c*x**2) + c*f*x**5*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

sage2

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x\,\left (d-f\,x^2\right )\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(d - f*x^2)*(a + b*x + c*x^2)^(3/2)),x)

[Out]

int(1/(x*(d - f*x^2)*(a + b*x + c*x^2)^(3/2)), x)

________________________________________________________________________________________